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Social media streams and remote sensing data have emerged as new sources for tracking disaster events, and
assessing their damages. Previous studies focus on a case-by-case approach, where a specific event was first cho-
sen and filtering criteria (e.g., keywords, spatiotemporal information) aremanually designed and used to retrieve
relevant data for disaster analysis. This paper presents a framework that synthesizesmulti-sourced data (e.g., so-
cial media, remote sensing, Wikipedia, and Web), spatial data mining and text mining technologies to build an
architecturally resilient and elastic solution to support disaster analysis of historical and future events. Within
the proposed framework, Wikipedia is used as a primary source of different historical disaster events, which
are extracted to build an event database. Such a database characterizes the salient spatiotemporal patterns and
characteristics of each type of disaster. Additionally, it can provide basic semantics, such as event name (e.g., Hur-
ricane Sandy) and type (e.g., flooding) and spatiotemporal scopes, which are then tuned by the proposed proce-
dures to extract additional information (e.g., hashtags for searching tweets), to query and retrieve relevant social
media and remote sensing data for a specific disaster. Besides historical event analysis and pattern mining, the
cloud-based framework can also support real-time event tracking and monitoring by providing on-demand
and elastic computing power and storage capabilities. A prototype is implemented and tested with data relative
to the 2011 Hurricane Sandy and the 2013 Colorado flooding.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Every year extreme weather and climate events, such as cyclones,
floods, tornados and geological events such as volcanic eruptions, earth-
quakes or landslides, claim thousands of lives and cause billions of dol-
lars of damage to property and severely impact the environment (Velev
& Zlateva, 2012). Disasters and their effects have been increasing both in
frequency and severity in the 21st century because of climate change,
increasing population and their reliance on aging infrastructure. In
fact, the first decade of the 21st century witnessed 3496 natural disas-
ters including floods, storms, droughts and heat waves, nearly five
times as many disasters as the 743 catastrophes reported during the
1970s.1 Therefore, an urgent need exists to understand spatiotemporal
patterns and the general dynamics that contribute to the occurrences
ervone@psu.edu (G. Cervone),

014/jul/14/8-charts-climate-
of disasters. These combined studies are necessary to develop effective
strategies to mitigate their destructive effects, and to respond and coor-
dinate efficiently to protect people, properties and the environment.

Social media have been primarily used as an intelligent “geo-sensor”
network to detect extreme events and disasters such as hurricanes and
earthquakes, and to gain situational awareness for emergency responders
and relief coordinators during crises by monitoring and tracking citizens
feedbacks (Sutton, Palen, & Shklovski, 2008). Additionally, they arewidely
used by scientists to study public risk perception, and people's reactions
during disasters (Mandel et al., 2012). On the other hand, remote sensing
data are paramount during disasters and have become the de-facto stan-
dard for providing high resolution imagery for damage assessment and
the coordination of disaster relief operations (Cervone et al., 2016;
Cutter, 2003; Joyce, Belliss, Samsonov, McNeill, & Glassey, 2009). Using
high resolution imagery from commercial and research air- and space-
borne instruments, it is possible to obtain data within hours of major
events, frequently including ‘before’ and ‘after’ scenes of the affected
areas (Cervone & Manca, 2011). These ‘before’ and ‘after’ images are
quickly disseminated through scientific portal and news channels to as-
sess damage and inform the public. In addition, first responders rely
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heavily on remotely sensed imagery for coordination of relief and
response efforts as well as the prioritizing of resource allocation.

Despite the wide availability of large remote sensing datasets from
numerous sensors, specific data might not be collected in the time and
space most urgently required. Geo-temporal gaps result due to satellite
revisit time limitations, atmospheric opacity, or other obstructions. Re-
cently, stream data from social media and remote sensing are being
fused for disaster analysis and assessment. Specifically, social media
are used to fill in the gaps when remote sensing data are lacking or in-
complete (Schnebele & Cervone, 2013; Schnebele, Cervone, Kumar, &
Waters, 2014; Schnebele, Oxendine, Cervone, Ferreira, &Waters, 2015).

However, current studies on using social media and remote sensing
data for disaster analysis are performed on a case-by-case basis. The ap-
proaches typically start with identifying a specific disaster event, and
then filters (e.g., keywords, spatiotemporal information) are designed
to select and retrieve relevant stream data. These efforts are time-con-
suming. For example, identifying the tweet hashtags associated to a spe-
cific event, may take from hours to days for manual examination of
hundreds of tweets to include relevant hashtags so we can use them
to filter out non-relevant tweets during a disaster. Furthermore, these
efforts need to be duplicatedwhen analyzing a different event. As stated
earlier, it is necessary to complete a comprehensive database that can
display the historical events with relevant metadata (e.g., event type,
severe category, damages, locations, and temporal spans) to allocate re-
sources for analysis. Additionally, from the basic metadata, it is also
needed to automatically derive relevant information (e.g., hashtags),
which can then be used to retrieve relevant messages from long-term
accumulated social media.

With multi-sourced data streams from a multitude of channels,
identifying authoritative sources and extracting critical, validated mes-
sages information can be quite challenging, especially during a crisis.
The volume, velocity, and variety of accumulated stream data produce
the most compelling demands for computing technologies from big
data management to technology infrastructure (Huang & Xu, 2014).
To address these big data challenges, various types of computational in-
frastructures are designed, from the traditional cluster and grid comput-
ing to the recent development of cloud computing and CPU/GPU
heterogeneous computing (Schadt, Linderman, Sorenson, Lee, & Nolan,
2010). Specifically, cloud computing has been increasingly viewed as a
viable solution to utilize multiple low-profile computing resources to
parallelize the analysis of massive data into smaller processes (Huang
& Cervone, 2016).

This paper addresses these problems by proposing a novel system to
support both historic disaster event analysis and upcoming event mon-
itoring.Wikipedia is exploited as a source to build a disaster event data-
base, which is then applied to retrieve relevant information for a specific
disaster frommassive social media data accumulated daily. Cloud com-
puting is proposed to serve as the underlying infrastructure that offers
the capability of providing on-demand and flexible computing re-
sources to meet the dynamic computing requirements of real-time di-
saster analysis. The following contributions are made in this research:

1. An integrated system framework is proposed for historical disaster
analysis based on multi-sourced data with limit, if any human inter-
action. To analyze and understand the public behaviors or reactions
captured by social media data, our system does not rely on human
identification of filtering criteria to retrieve relevant messages. An
automatic system based on text mining, and geocoding technologies
are developed to derive these information.

2. An event database is built based on Wikipedia. Such a database is
useful for scientists easily selecting a relevant event for analysis or
selecting disasters of a specific type to identify their patterns, and
linking it to other GIS data (e.g., socioeconomic data), climate data,
and environment data to understand the driving factors that contrib-
ute to the occurrences of these disaster events.
3. Within the proposed system, cloud computing is used as the under-
lying infrastructure to provide flexible computing power to address
the computing challenges posed by the massive data processing
and a real-time operational system for emergencies response and di-
saster coordination. Such a system is suitable for online services and
systemswhere a number of texts, and remote sensing images are dy-
namically streaming.

4. A prototype is implemented, and recent flooding events are used as a
case study to demonstrate the feasibility of the proposed system.

5. This paper provides a generalmethodology that it is not event specif-
ic, and can be used both for retrospective analysis and for real time
monitoring and decision making. The proposed framework sheds
light on integrating various emerging data sources to support scien-
tific applications of significant interests that go beyond disaster
management.

2. Related work

2.1. Social media for disaster management

As social media applications are widely deployed in various plat-
forms from personal computers to mobile devices, they are becoming
a natural extension to human sensory system. The synthesis of social
media with human intelligence has the potential to be the intelligent
sensor network that can be used to detect, monitor and gain situational
awareness during a hazard with unprecedented scale and capacity. By
monitoring tweets, for example, an earthquake can be detected by de-
veloping a probabilistic spatiotemporal model for the target event that
can find the center and the trajectory of the event location (Sakaki,
Okazaki, & Matsuo, 2010).

By mining social media data, it is possible to establish situation
awareness for disaster response and relief (Ashktorab, Brown, Nandi,
& Culotta, 2014; Gao, Barbier, & Goolsby, 2011; Huang & Xiao, 2015;
Imran, Elbassuoni, Castillo, Diaz, & Meier, 2013; Kumar, Barbier,
Abbasi, & Liu, 2011). Using Hurricane Sandy as an example, Huang
and Xiao (2015) coded social media messages into different themes
within different disaster phases during a time-critical crisis, and a clas-
sifier based on logistic regression is trained and used for classifying
the social media messages into various topic categories during various
disaster phases. Imran et al. (2013) extracted information from disas-
ter-relatedmessages posted on Twitter into several categories including
warnings, casualties and damage, donations, and information sources.
The coded information can be further analyzed over space and time to
inform the situational awareness of the incidences as they unfold. The
Australian Government developed an Automated Web Text Mining
(ESA-AWTM) system that analyzes Twitter messages to provide inci-
dence identification, near real-time notification, and monitoring
(Cameron, Power, Robinson, & Yin, 2012). A web application,
“TweetTracker”, was developed by Kumar et al. (2011) to track, analyze,
andmonitor tweets for disaster relief. It can report separately geo-refer-
enced and non-geo-referenced tweets, support keyword search, and
generate and display trends of keywords specified by the user.

However, all published methods rely on a case-by-case analysis of
historical events, or support simple real-time data searching and analy-
sis functions (Kumar et al., 2011). There is no systematic approach pro-
posed to support both historical event and real-time event tracking
capabilities.

2.2. Synthesizing multi-sourced data for disaster management

In a time of disaster, multi-sourced data can be integrated to assess
the situation. Such integration results in new approaches to support di-
saster management in a new way that cannot be done previously and
significantly improve the analysis and capability of a single data source.
For example, while socialmedia data have been successfully used to de-
tect and track locations of disaster events (e.g., earthquake, tornado, and
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wildfire; Sakaki et al., 2010; De Longueville, Smith, & Luraschi, 2009;
Jain, 2015), disaster detection is not always possible using single-
sourced data (e.g., tweets) alone and there is a need to integrate addi-
tional space- and time-referenced information collected from other
sources (Fuchs, Andrienko, Andrienko, Bothe, & Stange, 2013). As a re-
sult, an active research is to fuse data from multiple sources to support
and improve disaster management. De Albuquerque et al. (2015) used
“authoritative” data (e.g., sensor data, hydrological data and digital ele-
vation models) to enhance the identification of disaster relevant social
media messages. Schnebele and Cervone (2013) integrated remote
sensing data with social media to verify the presence of water in a spe-
cific area during flooding events.

2.3. Data challenge and cloud computing

Social media data are real-time in nature. These stream data, along
with other official and authoritative data sources, such as remote sens-
ing, are valuable for disaster management yet require a computing en-
vironment that is adaptable to expand and store peaks of considerable
amounts of data in timelymanner (Wang, 2010). Traditional computing
platform lacks the scalable computing infrastructures to handle stream-
ing social media data. Cloud computing, a new distributed computing
paradigm, has been widely utilized to address Geoscience challenges
of computing, data and concurrent intensities (Yang, Wu, Huang, Li, &
Li, 2011). One of the most important characteristics of cloud computing
infrastructure is that users can provision computing resources to run
computing tasks with automated workflows for maximum efficiency
and scalability in minutes. There is no need to wait in queues and com-
pete for limited computing nodes as in the traditional computing para-
digm. Therefore, cloud computing is a powerful and affordable
alternative to run large-scale data processing and computation that
are computationally intensive (Huang & Cervone, 2016; Huang, Yang,
Benedict, et al., 2013; Huang, Yang, Liu, et al., 2013; Tang & Feng,
2017; Tang et al., 2017; Yang et al., 2011).

Many studies have been conducted to explore the feasibility of utiliz-
ing cloud computing for geospatial applications and how to best adapt
to this new paradigm (Evangelinos & Hill, 2008; Huang, Yang,
Benedict, et al., 2013; Li et al., 2017; Yang et al., 2011). Evangelinos
and Hill (2008) concluded that cloud computing could provide a poten-
tial solution to support atmosphere-ocean climate models, and Huang,
Yang, Benedict, et al. (2013) utilized cloud computing to simulate dust
storms. However, these studies mostly use cloud computing to support
the computing- intensive geospatial science simulations, and no effort
has beenmade to explore how cloud computingmay be leveraged in di-
saster management. Recently, Hadoop cloud platform is a widely used
scalable distributed computing environment to process social media
data (Gao, Li, Li, Janowicz, & Zhang, 2017). However, only limited
geospatial applications have been developed to leverage such
MapReduce based framework, which has come to define big data
process.

While social media is widely used to support disaster management,
the variety and veracity of social media data poses grand challenge to
the current streaming data processing frameworks and architecture.
Zelenkauskaite and Simões (2014) implemented a mobile application
based on cloud architecture to support computationally intensive oper-
ations, such as searching, datamining, and data processing at large scale.
Padmanabhan et al. (2014) introduced a data-driven framework using
geographic information systems (GIS) based on advanced
cyberinfrastructure (CyberGIS) and massive social media data to ana-
lyze spatiotemporal events across spatial and temporal scales. Similarly,
Huang, Cervone, Jing, and Chang (2015) presented a CyberGIS frame-
work to synthesizemulti-sourced data (e.g., socialmedia, socioeconom-
ic data) for tracking disaster events, producing maps, and performing
various analyses for disaster management. The proposed framework is
capable of supporting Big Data analytics from multiple sources. Addi-
tionally, multimedia streaming data (e.g., social media, remote sensing)
are difficult to analyze and process in real time because these streams
are diverse, complex and overwhelming in volume, velocity and in the
variety of the data fields. Correspondingly, Zhang, Chen, and Yang
(2015) established a Markov chain model to predict the trend of big
stream data and then appropriate cloud computing nodes are allocated
to process them using the predicted results.
3. A cloud-based disaster analysis system

Fig. 1 shows a general architecture for disaster analysis leveraging
multiple sources. The system is designed to include six integrated com-
ponents, including: 1) Data repository, responsible for archiving and re-
trieving datasets. An automatic system is developed to crawl and
integrate unstructured, heterogonous data from various sources, such
as Wikipedia, remote sensing, social media, and Web. Disaster relevant
messages posted fromdifferent socialmedias such as Twitter, and Flickr
are monitored and tracked; 2) Data server. This component provides
basic data processing functions; 3) Application server, offering high-
level analytical functions; 4) Web server, providing the key functions
to support data search, analysis, visualization, or animation service re-
quested from through theweb portal. 5) Spatial web portal (SWP), pro-
viding information analysis for end users through geovisualization or
animation with interactive tools (Roth, 2012, 2013). The SWP is a
web-based or mobile-based spatial gateway for the purposes of track-
ing, visualizing and analyzing disaster events. With the portal, public
users can search against the resource catalog to discover the historical
events and track a latest disaster event; 6) Cloud clusters. Cloud clusters
provide a set of core functions to implement an architecturally resilient
and flexible disaster analysis system. The following sections elaborate
several important components in our system design.
3.1. Data server

Thedata server implements a variety of functions that are performed
on the rawdata. Thebasic function that the server provides is harvesting
data using different application programming interfaces (APIs) to ingest
data from multiple sources. In this work, Wikipedia (https://www.
wikipedia.org/) is used as a primary data source for building an event
database. Wikipedia includes a wealth of information for researchers
in easy to access formats including XML, SQL and HTML, which makes
it an attractive repository for projects on information extraction. It is
worth noting that there are many other disaster information sources
could potentially be used as sources to build such an event database,
such as emdat.2 Wikipedia is ideal for the proposed task because its
raw data are easily accessible using APIs and they can be imported in
a local database for fast access and analysis in a high performance
framework. Twitter Stream APIs can be used to harvest about 1% total
tweets. Each tweet is a document entry with metadata about that
tweet message, such as the user name, time stamp and location when
the tweet was created, source generating the tweet, text content, and
hashtags, etc. Using a data-driven approach to archive social media
data (Huang & Xu, 2014), millions of tweet messages are accumulated
daily.

The data server is also used to store the remote sensing data related
to the events being investigated. The main challenges arise from the
sheer volume of remote sensing data, where each granule (a multi-
spectral scene) can be up to a terabyte in size. The data are stored
with ancillary data which specify the platform, the spatial and temporal
coverage, and additional metadata which include any pre-processing
applied to the data from the time of acquisition to the time it is
distributed.

https://www.wikipedia.org
https://www.wikipedia.org
http://www.emdat.be/database


Fig. 1. Architecture of a cloud-based disaster analysis system.
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Depending on the data source, the ingestion of remote sensing data
into the data server can be automatic using APIs, or can occurmanually.
For example, NASA/USGS Landsat and NASA MODIS data can be auto-
matically ingested using an APIs from NASA and USGS. However, com-
mercial high resolution data must be processed manually because of
licensing limitations. Most remote sensing data related to worldwide
hazards can be downloaded using the USGS Hazards Data Distribution
System (HDDS), which includes data both for aerial and space plat-
forms. A Python script was created to automatically download relevant
free data (e.g. USGS Landsat, Civil Air Patrol, MODIS), which can be au-
tomatically ingested into the data server.

Several data pre-processing procedures are then developed to extract
relevant information from these raw data beforewe can import and store
them to the data repository. The overall methodology is illustrated using
Wikipedia data as example (Fig. 2). Wikipedia data processing requires
using JWPL (Java Wikipedia Library; https://code.google.com/p/jwpl/
Fig. 2.Workflow to build a d
wiki/DataMachine), a free Java-based API that allows accessing all infor-
mation in Wikipedia. For each type of disaster (e.g., Category 3 Atlantic
hurricanes; https://en.wikipedia.org/wiki/Category:Category_3_Atlantic_
hurricanes), a manual search is performed for a category name defined
in Wikipedia and use this category as the root node. Then breadth-first
search (BFS) is performed from this node to identify all subcategories.
The leaf nodes resulting from such transversal corresponded toWikipedia
pages or articles describing specific events.

Each article contains one or more “infobox(es)”, which include
structuredmetadata that are added to the top right-hand corner of arti-
cles (Fig. 3). The JWPL tool allows retrieving all infobox tables (or tem-
plates) which contain important facts and statistics of a type (e.g.,
disaster impact information) which are common to related articles.
Therefore, for each article inWikipedia, the infobox templates are proc-
essed and used to extract metadata for a specific event. The resulting
text then can be further processed with the same procedure starting
isaster event database.

https://code.google.com/p/jwpl/wiki/DataMachine
https://code.google.com/p/jwpl/wiki/DataMachine
https://en.wikipedia.org/wiki/Category:Category_3_Atlantic_hurricanes
https://en.wikipedia.org/wiki/Category:Category_3_Atlantic_hurricanes


Fig. 3. An example of Wikipedia article introducing Hurricane Sandy (The top right-hand corner of article shows information from an infobox).
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from natural language processing (NLP; Fig. 2). NLP tasks include from
relatively straightforward tokenization and part-of-speech (POS) tag-
ging, to more complex procedure named-entity recognition (NER),
which identifies and categorizes atomic elements in text (e.g., Organiza-
tions, Persons, Locations, Time, etc.). All atomic elements are mined
using an ad-hoc procedure to extract the values of the fields defined
in the event database. If the element is a location represented with an
address, a geocoding process using the Google Geocoding API (https://
developers.google.com/maps/documentation/geocoding/intro) is in-
voked to extract the corresponding geographic coordinates.

3.2. Data repository

After themulti-sourceddata is collected, they are imported into differ-
ent database types to be processed for disaster analysis. Social media data
are not uniform and structured in nature, and therefore they are stored in
a non-traditional database (DB) system. In the current implementation,
the MongoDB (Huang & Xu, 2014) is used. This is a scalable open source
NoSQL databasewhich is designed tomanage those social media datasets
efficiently. The remote sensing data are stored in a PostgreSQL database
using spatial extensions (PostgreSQL/PostGIS). Specifically, the spectral
layers are stored as binary fields, and are associated with metadata
which define the spatial extents, the temporal coverage, and other fields
that describewhen,where andhow the datawas acquired andprocessed.
The use of a spatial database allows performing SQL queries to quickly
identify associated images that match the disaster event being analyzed.

Disaster events extracted from the Wikipedia are annotated with
fields that give structured information, and consequently can be effi-
ciently managed and organized using a traditional spatial relational da-
tabase management system (RDMS), such as PostgreSQL/PostGIS. For
each disaster event entry, the database stores several key information
categories, such as physical infrastructure damages, economic and life
losses, locations impacted by the event, and temporal duration of the
event. These information can be used to quantify the impact of disaster
in terms of economic loss fromflooding damage, and total number of in-
juries and deaths. Additionally, they provide a basic metadata that can
be used for developing filtering criteria for stream data in the database.
To efficiently retrieve social media from the NoSQL database, metadata
about social media are stored in the PostgreSQL/PostGIS database. For
example, the hashtags associated with each event are stored in our
metadata database and can be efficiently queried.
3.3. Application server

The application server provides a series of services to address the is-
sues of the data and service integration and interoperability across var-
ious data. The application server can perform a variety of analytical or
data mining functions requested by other servers. Apache Mahout
(http://mahout.apache.org/), an open-source library that implements
scalable machine learning algorithms, is used as the underlying library
to support big data analytics. Mahout has been widely used to perform
various text mining tasks, such as grouping together similar documents
by using various clustering algorithms (Huang & Xiao, 2015). It is very
fast and has excellent integration with other popular open-source
Apache libraries, such as Hadoop and Lucene (a high-performance text
search engine library). Recently, MapReduced based systems have
emerged as a new computing paradigm for massively parallel data pro-
cess (Dean & Ghemawat, 2008). Hadoop, the most widely used imple-
mentation of MapReduce, has been successfully applied in large-scale
Internet services to support big data analytics. In Mahout, many classic
algorithms for data mining, such as naïve Bayes, Latent Dirichlet

https://developers.google.com/maps/documentation/geocoding/intro
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http://mahout.apache.org
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Allocation (LDA) (Blei, Ng, & Jordan, 2003), and logistic regression are
implemented as MapReduce jobs in Mahout.

In our work, two critical data mining tasks are to discover i) the
emerging “hot topics” that are discussed over the social media by con-
stantly running a topic modeling algorithm, and ii) locations of these
topics by running spatial clustering algorithm (Fig. 1). These functions
are critical to detect potential disasters, and are introduced in
Section 4 in details. Additionally, the application server can also perform
basic GIS data processing functions, such as geospatial data re-projec-
tion and format conversion. It is noted that the interaction between
the data server and application server are dual. On one hand, the data
preprocessing module dispatched in the data server may need to call
the functions (e.g., geocoding and basic GIS data processing functions)
that are deployed on the application server. On the other hand, applica-
tion server needs to request the data retrieval service from the data
server which can communicate with the data repository directly.

The integrated system for disaster analysis is built to integrate com-
puting resources from both private cloud computing platform based on
the open source Eucalyptus cloud solution (Huang, Yang, Benedict, et al.,
2013; Huang, Yang, Liu, et al., 2013), and public cloud Amazon EC2
(https://aws.amazon.com/ec2/). Tomanage cloud computing resources
(e.g., virtual machines and virtual storages) from different cloud plat-
forms, a cloud control module is developed and deployed on the appli-
cation server to interactwith different clouds through APIs. Thismodule
provides an abstraction interface and handles the implementation de-
tails for different underlying cloud platforms. Whenever there is a
data processing task (e.g., hot topic detection) coming in, this module
will invoke different types of cloud cluster to execute it.

3.4. Cloud clusters

Specifically, the cloud clusters can support the underlying comput-
ing requirements posed by an operational system based on the pro-
posed framework by providing the following functions (Fig. 1).

• Remote sensing image processing: Remote images are used to derive
damage extent and assessment maps.With the rapid improvement of
data acquisition technologies, remote sensing images of before and
after a disaster are available at high spatial and temporal resolution.
The damage assessment for the 2013 Colorado flooding was per-
formed using 12 satellite and over 6000 aerial images. Parallel com-
puting and distributed systems (Guan, Zeng, Gong, & Yun, 2014;
Shook,Wang, & Tang, 2013) are needed to process these large amount
of high-resolution imagery in order to derive customized products in
real-time. Specially, multiple cloud nodes can be launched with each
node processing a portion of aerial images instead of using a single
machine to handling all images in serial.

• Social media datamining: Text and spatiotemporalmining of massive
social media datasets are time-consuming. The computing cost of the
DBSCAN algorithm (Ester, Kriegel, Sander, & Xu, 1996), for example,
used for detecting the locations of potential disaster events (Section
3.2) is the n4 where n represents the number of clustered points; it
is computing intensive, especially when the results are expected to
produce in a real-time fashion. Therefore, parallel computing and
the latest computing models such as cloud computing (Huang, Yang,
Benedict, et al., 2013) should be applied into the proposed framework.
Detecting the “hot topics” from streaming social media data using
topic modeling algorithm is also computational intensive. Our current
system implementation uses MapReduced based framework to sup-
port such real-time stream data process. However, more efficient big
data computing paradigms, such as Apache Storm (Ranjan, 2014),
Apache Kafka (Kreps, Narkhede, & Rao, 2011), and Amazon Kinesis,3

can be leveraged and integrated into our proposed system in future.
• High performance: Cloud computing provides scientists with a
3 https://aws.amazon.com/kinesis.
complete new computing paradigm for accessing and utilizing com-
puting infrastructure. Cloud computing services, especially Infrastruc-
ture as a Service (IaaS), a category of popular cloud services, can be
easily adopted to offer the prevalent high-end computing technolo-
gies to provide more powerful computing capabilities. Many cloud
providers offer a range of diverse computing resources for users' com-
puting needs, such as Many Integrated Cores (MICs), Graphics Pro-
cessing Units (GPUs; Tang & Jia, 2014), and Field Programmable
Gate Arrays (FPGAs). For example, Amazon EC2 Cluster, with
17,024 CPU cores in total, a clock speed of 2.93 GHz per core, and
10G Ethernet network connection, was ranked as 102th on the
TOP 500 supercomputer lists in the November 2012. The HPC
capability of cloud computing can be easily leveraged to support
critical scientific computing demands (Huang, Yang, Benedict,
et al., 2013).

• Resilient support: Architectural resilience can be achieved in many
ways including 1) having back-up redundant systems that auto-
matically deploy when primary systems fail, or 2) employing mul-
tiple solutions to ensure that a minimum level of system
functionality is available during massive system failures (Pu &
Kitsuregawa, 2013). Cloud services provide an ideal platform to
implement this resilient mechanism. Cloud computing providers
offer computing and storage services that are globally distributed.
For example, Amazon EC2 has multiple data centers around the
world with the service. An image containing the configured system
could be built in cloud services, and then a new replicated applica-
tion can be easily launched on failover systems in a different cloud
zone in a few minutes (Huang, Yang, Benedict, et al., 2013) after a
failure.

• Concurrent user response: Hazard events often have annual or sea-
sonal variability and are of short duration. Most events typically
last a relatively short period from several hours (e.g. tornados) to
several days (e.g. hurricanes). As a result, a real-time response sys-
tem for such events would experience different computing and ac-
cess requirements during different times of the year and even
different hours within the day. During a disaster, the computing
platform supporting an emergency response system should be
able to automatically scale up enough computing resources to
produce and deliver relevant and useful information for the end
users. After the emergency response, the access to information
can be reduced and the system can switch back to “normal mode”
for reduced costs. Computing resources would be released for
other science, application, and education purposes. Applications,
running on the cloud, can increase computing resources to handle
spike workloads and accelerate geocomputation in a few seconds
to minutes. Additional computing resources can be released in
seconds once the workloads decrease.

Within the proposed framework, a cloud cluster generally comprises
a virtual head node and multiple virtual computing nodes. Both head
and computing nodes are created as virtual machines that can run inde-
pendently and communicate through a virtual network. Middleware is
installed and configured on all nodes tomonitor and support communi-
cation between the head node and computing nodes. The head node is
responsible for (1) scheduling and dispatching tasks to computing
nodes, (2) activating the computing tasks by configuring the
middleware, and (3) collecting results from the computing nodes. Dif-
ferent types of cloud cluster are configured by deploying different
open-source middleware solutions, such as Apache Hadoop (https://
hadoop.apache.org/), Condor (http://research.cs.wisc.edu/htcondor/)
and MPICH (https://www.mpich.org/), and used to create images,
which in turn are readily launched to run different types computing
tasks. For instance, a Hadoop cluster can be configured to process and
analyze the large amount of social media data because of its key charac-
teristics of being reliable, flexible, economical, and a scalable solution.

https://aws.amazon.com/ec2
https://hadoop.apache.org
https://hadoop.apache.org
http://research.cs.wisc.edu/htcondor
https://www.mpich.org
https://aws.amazon.com/kinesis


4 https://en.wikipedia.org/wiki/Hurricane_Bertha_(2014).

29Q. Huang et al. / Computers, Environment and Urban Systems 66 (2017) 23–37
4. Real-time event detection and tracking

4.1. Hashtag detection: Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA; Blei et al., 2003) is an example of a
topic model for analyzing a large number of unlabeled data. LDA can be
used to cluster words into “topics” and documents into mixtures of
“topics” by uncovering the hidden thematic structure (or “topics”) in a
large collection of documents. In LDA, each document is represented
as a probability distribution of various topics, which are in turn distribu-
tions over words. Each word could belong to one or more topics.

As each tweet is limited to 140 characters, it is highly unstructured,
including a large number of abbreviations, and hashtags, unspaced
phrases prefixedwith the sign “#”. Any user whowants to create a con-
cept category and to discuss and share specific information about a sub-
ject can create a hashtag. A hashtag, an identifier unique to Twitter, is
often used to search for tweets that have a common topic. Therefore,
in our study, each tweet is a document and only hashtags are extracted
aswords to represent the documentwhilemodeling the tweeting topics
with LDA.

The ApacheMahoutmachine learning library is integrated to run the
LDA over the recently collected tweets to discover topics that are cur-
rently discussed over the social media, and detect potential disaster
events.While running the LDA algorithm, we need to enter a critical pa-
rameter - the number of topics (k). A low k value could produce in
broader topics, while a large k value results in focused topics. A large
value also results in more computation to estimate the word distribu-
tion for all topics. In order to choose an appropriate value, a program
is developed to calculate the frequency of hashtags in the document,
and count the number of hashtags (n) that have the frequency larger
than a predefined threshold (e.g., 100). This number (n) is then used
to set up the value of k.

An advantage using Mahout is that the LDA algorithm is imple-
mented as a MapReduce job, which can be run in a large Hadoop
clusters. Therefore, we can leverage cloud clusters (Fig. 1) to speed
up the process of topic detection by adding more virtual machines
into the computation. After running LDA model, an output of the
computed topics with each topic being represented as a set of
frequently occurring words (hashtags) with certain probability is
produced.

4.2. Event detection: a density-based method

After discovering “hot topics” through LDA model, the words
(hashtags) in each topic are used tomatch a predefined list of keywords
related to a natural hazard, such as “hurricane”, “storm”, “quake” etc. If a
match is detected, an alert would be posted by the system to provide
early warnings about a potential disaster. At the same time, the geo-
tagged tweets with these hashtags are retrieved from the database to
detect the locations where the disaster might occur. We can apply spa-
tial clustering to learn the regions thatmay have potential natural disas-
ters causing unusual tweeting behaviors over the socialmedia. K-means
(Ashbrook & Starner, 2003) is a well-known clustering algorithm com-
monly used to identify Point of Interests (POIs). However, K-means al-
gorithm needs us to specify the number of clusters (K) in advance.
This is quite challenging since we do not know appropriate values for
the number of places that have potential disaster events.

The density-based spatial clustering algorithm (Ester et al., 1996) is
designed to discover clusters of arbitrary shape with noises. It does not
require specifying the number of clusters, but requires two inputs: the
minimum number of points (minpts) forming a cluster, and the radius
of the ε-neighborhood of a point (eps). These two parameters are less
likely to be changed within a particular application. We therefore
chose DBSCAN to cluster these geo-tagged tweet points into regions of
potential interests. After performing the spatial clustering, a set of clus-
ters is discovered with each cluster indicating a region of potential
natural disaster area. A boundary (convex hull or concave hull) of
each cluster including all the points in the cluster is used to better rep-
resent the shape of the region. In fact, simpler features, such
circumscribed circles andminimum rectangles may also be used to rep-
resent the potential regions.

5. Demonstration

A system prototype is implemented based on JAVA, Java Server Page
(JSP) and Python to automatically harvest and analyze various types of
data. Several open-sources are used for the prototype development.
For instance, Apache Mahout package is used for performing data and
text mining tasks, Apache Lucene for text processing and indexing
tasks, and GoogleMaps and Geocoding APIs for mapping and geocoding
the tweets. Various geovisual tools are developed and accessible
through the developed spatialwebportal that allows users to customize
analysis and view multi-sourced data in different types of maps and
plots for disaster management.

5.1. Event database construction and analysis

The system was tested using data relative to Atlantic hurricanes of
category 1 to 5 that have occurred since 18th century. First, event data
are harvested and imported to our event database using Wikipedia.
An Atlantic hurricane or tropical storm is a tropical cyclone that forms
in the Atlantic Ocean, Caribbean Sea and Gulf of Mexico, usually in the
Summer or Fall. 365 events in total are extracted. The earliest record is
‘1812 Louisiana hurricane’, which was a major hurricane that struck
New Orleans, Louisiana, during the War of 1812. The most recent one
is ‘Hurricane Bertha (2014)’,4 an unusual tropical cyclone in early Au-
gust 2014. As a tropical cyclone, Bertha's impact was relatively minor.
Widespread power outages occurred along its path but no major dam-
age or loss of life took place.

The developed web portal has several functions to support the anal-
ysis of the events temporally (Fig. 4) and spatially (Fig. 5). The left panel
allows users to analyze a specific event by selecting the available event
types and categories stored in the database, and configuring spatial and
temporal scopes. The system is able to return the statistical results as
statistical plots to the client. It can be observed that we have witnessed
a large number of flooding events triggered by a tropical cyclone in 2005
(Fig. 4). Within this year, most of flood events are categorized as 1
(seven events), where damage is mostly to trees and shrubbery with
no real building damage, followed by the flooding of category 5 (four
events), where extreme damages would be made to both the physical
infrastructure and human. One of the five deadliest hurricanes in the
history of the U.S, Katrina, occurred exactly in this year. Among all the
states along the east coast line, the most vulnerable state is Florida,
which was struck by hurricanes for 70 times in the past 200 years,
followed by Texas (39 times) and Louisiana (37 times).

Authorized users also allow checking details, editing, approving or
disapproving a specific event (Fig. 6). Since the event metadata are ex-
tracted automatically through theWikipedia, and its accuracy are highly
reliant on the text mining techniques used in the research. Therefore,
authorized users can check the information about an event, such as lo-
cation, and time spans. If there is any error discovered, they can submit
an edit request, which is approved or rejected by users with higher level
of access permission of the system.

5.2. Hashtag detection and real-time event tracking

The system is able to support the automatic detection of potential
events by integrating topic modeling and spatial clustering algorithms.
Fig. 7 (left panel) shows that the end users can set up relevant

https://en.wikipedia.org/wiki/Hurricane_Bertha_(2014)_


Fig. 4. Different categories (severity levels) of Atlantic hurricanes in the past two decades.
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parameters to detect potential hashtags associatedwith a specific event.
A critical parameter is “track interval”, indicating the time span for
which tweets are monitored and used for detection. For example, if
the interval is 1 h, then tweets posted within the past 1 h will be used
as the input for the LDA modeling (Section 4.1).

The application server can consistently calculate the frequency of
each hashtag with our developed program, and triggers a cloud cluster
with Hadoop environment to run the LDA algorithm as a MapReduce
job,which can detect topics discussed over the Twitter at the predefined
“track interval”. For each hashtag (e.g., Sandy), the system will find the
topic that it belongs, and associated words (e.g., HurricaneSandy) of the
topic, which are hashags posted along with the hashtag. This informa-
tion is then automatically stored in the database, accessible and
displayed on the web interface (Fig. 7 middle panel). For this demon-
stration, the tweets between “2012-10-27 22:33:27”, when the first
geo-tagged tweet with the hashtag “#sandy” in the text was posted
on Twitter, and “2012-10-27 23:59:59” were used. Within this period,
Fig. 5. Spatial distribution
it was detected that there are nine hashtags that have the frequency
more than the predefined tweeting threshold (100 in this case), which
is an adjustable variable defined in our system to control the number
of topics. A high threshold produces less topics, therefore may miss
the detection of an emerging disaster event. On the other hand, if the
threshold is too small, a large number of topics may be produced.
While we tentatively set it as 100, trial-and-error may be needed to de-
termine its value eventually. To run LDA, the number of topics (k) and
the number of top words (w) within each topic should be predefined.
In our work, we rely on the tweeting threshold to determine the num-
ber of frequently posted hashtags, and use this number as the k value.
Therefore the topic number is set to nine while running the LDA algo-
rithm. It can be observed that several topics, such as SAT test and studies
(using the hashtags #gottaacemysatexam, and #satstudytime), Hallow-
een parties (using hashtag #halloween) emerged in the Twitter.

For each topic, the top 10 associated hashtags produced by LDA
modeling are displayed in the third column of the table (Fig. 7 middle
of Atlantic hurricanes.



Fig. 6. Check, edit, approve or disapprove the information of an event.
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panel). The model output is intuitive, and it can be seen that SAT test
hashtag (#gottaacemysatexam) is mostly associated with hashtags,
such as #excited (about the results), or #waiting (for the results) etc.
We also noticed that topic related to Hurricane Sandy lead by the hashtag
“#Sandy” also emerged. Its associated hashtags include “#frankenstorm”
with theword stormmatchedwith our predefined sensitive keyword list
related to natural hazards. Therefore, the systemwill post a warning alert
to relevant personnel through cell phone text messages or email ad-
dresses and start to monitor and track all tweets relevant to Sandy.

Through the user interface, users can also view the spatial distribu-
tion of the tweets with a specific hashtag included (Fig. 7 middle
panel). If the hashtag is relevant to a disaster, then users can click
“Track” button, the systemwill then continually monitor the streaming
tweets, and the application server will retrieve all disaster relevant
Fig. 7. Hashtag detection and real-time event Tracking (For b
tweets from the Mongo database, and process and store them in the
Postgresql/PostGIS database so they are ready to be accessible. If it is a
false alarm, users can click “UnTrack” button, and a revoke process
will trigger the application server to remove the monitoring task.

5.3. Identification of real-time event spatial region

In addition to show the spatial distribution of the tweets for an event
(Fig. 7), the system can also identity the spatial regions of the event (Fig.
8 and Fig. 9). On Oct 28th, President Barack Obama announced states of
emergency including Connecticut, District of Columbia, Maryland, Mas-
sachusetts, New Jersey, and New York. Fig. 8a and b shows the intensity
maps (or heatmaps) of geo-tagged tweets mentioning about Hurricane
Sandy within the same time period as Fig. 7 (between 22:33:27 and
etter display purpose, the hashtag sign “#” is removed).



Fig. 8. Intensity map of geo-tagged tweets related to Hurricane Sandy at different scale (a and b), and Hurricane Sandy path map (Courtesy of National Hurricane Center).
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23:59:59, Oct 27) in different map scales. Highest densities are found in
the U.S states along the east coast, such as New Jersey and New York. In
fact, these areas (Fig. 8b) relatively matched with the states declared as
the emergency ones and the path of Sandy (Fig. 8c). Therefore, using so-
cial media data can reasonably identify and predict the potential affect-
ed in advance.

While manually interpreting the intensity maps can help us identify
the general regions that may be impacted by an upcoming event, the
specific regions could be outlined using the proposed approach which
relies on DBSCAN to cluster the geo-tagged tweet points to detect po-
tential regions of events, and then delineates the boundary of each clus-
ter given the points in the cluster (Section 3.2). Ester et al. (1996) show
that using a minpts value smaller than four may misclassify random
points as clusters and a minpts value ≥ four unlikely produces clusters
of varying results. Additionally, a large number of geo-tagged tweets
(≥four)must be generated at an area before it can be considered as a po-
tential event zone. Therefore, it is reasonable to use a minpts value of
four while running DBSCAN algorithm. Correspondingly, the size of ra-
dius (eps) is the most influential in affecting the results in DBSCAN. As
Fig. 9. Identification of spatial region of Hurricane Sandy event in NY using DBSCAN with d
construction algorithms (convex hull algorithm: a, c, d, and e; concave hull algorithm [Duckha
shown in Fig. 9 displaying the potential region identified in the New
York, a large eps value (e.g., 10,000 m) tends to produce a large bound-
ary area, and a small value (e.g., 2500 m) may underestimate the re-
gions that are impacted. We also noticed that a value of 7500 m and
10, 000m produced similar results, whichmeans that when eps reaches
a certain value, the clustering results become stable. In this case, a value
of 5,000 m (Fig. 9d and Fig. 9g) produced the most realistic regions by
delineating the Manhattan area as the boundary.

Additionally, different boundary reconstruction algorithms (e.g.,
convex or non-convex) would produce different region shapes
(Fig. 9). Given a set of points, while it exists only one convex hull,
there can be many different non-convex (concave) shapes generated
using different algorithms and their parameterizations. In this paper,
we use a popular non-convex algorithm, known as chi algorithm
(Duckham et al., 2008) to characterize the boundary of clustered geo-
tagged tweets. The Chi algorithm needs to supply a length parameter
(l), which is the maximum length of border edges for the concave
hull. The boundaries produced by the convex hull algorithm may in-
clude a large area that overestimates the disaster region (Fig. 9a, c, d,
ifferent eps values (10,000, 7500, 5000 and 2500 m) and using different spatial region
m, Kulik, Worboys, & Galton, 2008] with l = 0: b, f, g and h).



Fig. 10. Use varying l values while constructing concave hull regions for the DBSCAN derived cluster with eps value as 10,000.
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and e). On the other hand, the boundaries estimated by the concave hull
are parameter-dependent, and varying the l values would produce dif-
ferent regions (Fig. 10). A small l value provides a better characteriza-
tion of the disaster regions associated with numerous tweets (Fig. 9b,
f, g and h with l = 0). Additionally, a small l value better matches the
shape of the hotspot regions (Fig. 10 a). However, it could underesti-
mate the area with a low number of tweets that are characteristics of
certain groups (i.e. low income, low education, and elderly) who may
lack the tools, skills and motivations to access social media. However,
increasing the l value would eventually result in a convex hull (Fig. 10
d). Therefore, it is more flexible to use a concave algorithm to generate
the disaster boundaries because it is possible to control the level of gen-
eralization and thus produce results that meet specific requirements.

While we discussed some general principles to choose the values of
DBSCAN and chi-algorithm parameters, how to select the most appro-
priate value or algorithm is still less than straightforward. Therefore,
we set them as adjustable variables that can be tuned through the
web interface and the end users can flexibly make changes depending
on different events during the implementation.

Ideally the influence of the background population needs to be fil-
tered out when mapping events ‘hotspots’ if such population informa-
tion is available. For instance, the underlying population-at-risk can be
accounted for when mapping disease clusters (Shi, 2010). For this
study, the underlying background population is the twitter users. How-
ever, an accurate estimation of the spatial distribution of the twitter
users is lacking. Thus, the intensity of tweetsmentioning disaster events
(e.g., intensity maps on Figs. 8, 9 and 10) is computed based on the raw
numbers of tweets. If data on the spatial distribution of tweet users are
available, such information can be used to account for the inhomoge-
neous background population. For example, the raw numbers of tweets
can be normalized using the number of tweet users by computing the
ratio of number of disaster-related tweets per thousand tweet users.
Among others, the kernel density estimation (KDE) method can be
adopted to generate intensity maps and account for population density
in the estimation process (Shi, 2010). The Dual KDE method estimates
the ratio of the intensity of events and the intensity of the background
population (Wang, Ye, & Tsou, 2016). However, the intensity maps are
only useful for examining regions that may be impacted by an upcom-
ing disaster through visual analysis and human interpretation. Note
Table 1
The query criteria for collecting tweets and Flickr photos and collected data for the 2013 Color

Source Total number Geo-refer

Message User Message

Twitter 99,515 31,725 1507

Flickr 1231 34 1150

*|| means logic or; &&means logic and. As an example, using query criterion “#coflood || #bould
that spatial clustering using DBSCAN is a separate process which does
not depend on the intensity maps.

One limitation of DBSCAN is that it fails to detect clusters properly
when the clusters are of different point densities. In this study, the den-
sity of tweets mentioning the disaster events of interests might be dif-
ferent across regions due to the inhomogeneous density of the
underlying tweets. When interpreting the clustering results, it should
be kept in mind that DBSCAN might fail to detect clusters over regions
with low tweet density (e.g., sparsely-populated areas). To address
this limitation, other more sophisticated spatial clustering algorithms
that can accommodate varying densities, VDBSCAN (Liu et al., 2007)
and DECODE (Pei, Jasra, Hand, Zhu, & Zhou, 2009) for example, could
be leveraged. VDBSCAN relies on the k-nearest neighbor distance plot
to interactively determine the number of clusters of varying densities
and the eps value for each cluster. DECODE first computes the probabil-
ity distribution of themthnearest distances of thepoints, it then uses re-
versible jump Markov Chain Monte Carlo to determine the number of
clusters and the eps value for each cluster based on the probability dis-
tribution. We adopted DBSCAN in this study mainly for its simplicity of
implementation. Nevertheless, it is the densely-populated areas that are
most subjected to disaster damages and are of most interest for disaster
response, and clusters in the densely-populated areas can be identified
properly byDBSCAN. The proposed approach is still a useful exploratory
tool for disaster response. Other approaches on disaster event detection
could also be examined and compared to develop a more sophisticated
disaster event detection solution in future. For example, Cervone et al.
(2016) divided the study area into grids (e.g., 10 × 10 km2), and
checked if there are a certain number of geo-tagged tweetswith specific
keywords (e.g., floods, tornadoes) generated within each grid (Cervone
et al., 2016).

5.4. Analysis of historical events

In addition to tracking a real-time event, the system also supports
the analysis of a specific historic event and the 2013 Colorado flooding
event is chosen as test case. It was a natural disaster occurring in the
U.S. state of Colorado, primarily the Front Range, El Paso County and
10 County, as well as portions of metro Denver. The event starts on
Sep 9, 2013, but the intensified situation occurred between Sep 12 and
ado flooding event.

enced Query criteria⁎

User

681 Hashtags: #coflood || #boulderflood;
Content: flood && (Colorado || boulder)

11 User tags: flood && colorado || boulder
Machine tags: flood && colorado || boulder
text: flood && (colorado || boulder)

erflood”would return all tweets that contain either hashtag “#coflood” or “#boulderflood”.



Fig. 11. The spatial distribution of geo-tagged tweets (Left: tweets inU.S; Right: tweets in theBoulder andDenver); The tweets aremost distributed in the state of Colorado, and a relatively
large number of tweets are also from the locations in the East and West coasts with high population density. Within the state of Colorado, tweets are mostly from the cities of Denver,
Boulder and Longmont.
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Sep 18, 2013. Social media data collected from Twitter and Flickr during
this time span are used. Table 1 shows the query criteria for retrieving
tweet and Flickr photos from our data repository and collected data
posted. The query criteria are derived using similar approaches for de-
tecting “hot topics” for a real-time event. Since we have the metadata
information (e.g., event name) about a historic event, the detected
hashtags and keywords using LDA algorithm, and frequency counting
program can bematched by thesemetadata. For this reason,more accu-
rate query criteria can be derived and used to retrieve data for a historic
event. From the Table 1, we can seewhile the tweets are posted by a rel-
atively large number of users, Flickr photos are mostly contributed by a
small number of users.

Users can explore the social media in various themes by configuring
the input parameters of the query such as temporal information
(timestamps when messages were posted), area of interest (AOI, also
known as spatial domain information), and analytical methods (visual-
ization or charting), etc. After obtaining query results back, users are
able to visualize the results to get an overall view of the spatial and
Fig. 12. The spatial distribution of Flickr photos; Most of photos
temporal patterns of the tweets (Fig. 11) or photos (Fig. 12) retrieved
from the database. The tweets are mostly distributed in the Colorado
(CO) state, and a relatively large number of tweets are also from east
coast and west coast with high population density. Within the CO,
tweets are mostly from the three big cities, including Denver, Boulder
and Longmont (Fig. 11). However, most of Flickr photos are posted
from the cities of Denver, Boulder and Loveland (Fig. 12).

5.5. Fusing social media and remote sensing data

The system also allows for the fusion of remote sensing data and so-
cial media. The data fusion problem consists of merging together het-
erogeneous data with different temporal and spatial resolutions. The
data fusion problem is complex because remote sensing observations
have a high spatial but low temporal resolution, and social media have
a high temporal but low spatial resolution. In this work, the data fusion
problem is accomplished by generating multiple layers of information
through kernel smoothing, and then vertically assimilating each layer
are posted from the cities of Denver, Boulder and Loveland.



Fig. 13. The overlay of water classification from Satellite data, and tweets in the city of Boulder CO for damage assessment. The FEMA flood map is also shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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through weighted averaging. Each layer corresponds to a different data
source, specifically from remote sensing and from social media. Because
confidence in data may vary with source characteristics, the kernel
bandwidth selection can be adjusted for each data type. The basic idea
is that the more certain the information given by a kind of data, the
higher the chosen kernel bandwidth. For example, aerial or ground im-
ages can beweighted according to the amount of water pixels identified
by the machine learning classification. Some layers might be weighted
more highly because they originated from official sources, or can be
quantified and verified. On the other hand, tweets are very subjective
and often reflect users' feelings.

We tested the system using data relative to the 2013 Boulder floods,
specifically fusing tweets with remote sensing data from the Landsat
and Worldview-2 satellite. First, the Normalized Difference Water
Index (NDWI) classification was performed for both Landsat and
WorldView-3 data. NDWI is a ratio of reflected electro-magnetic radia-
tion sensed using the green and the mid-infrared parts of the energy
spectrum. Pixels with high green and low mid-infrared values indicate
water presence. The generation of NDWI is fully automatic, and it does
not require human intervention.

Geolocated Twitter data were acquired for the region of Boudler CO,
accounting to nearly 100,000 tweets over a period of 10 days. A Kernel
smoothingwas performed over the Twitter data to generate a surface in-
dicating likely damage caused by the flood. Finally, the two layers, the
NDWI from satellite data, and the Twitter smoothed surface were aver-
aged to generate a new layer indicating the likeliness of flood damage.

As an example, several scenes from Landsat andWorldView-2 were
downloaded during the 2013 Colorado flooding event, and their multi-
spectral channels used to classify water pixels. Fig. 13 shows a map for
the city of Boulder and a portion of Boulder County illustrating the
water classification from satellite imagery (dark blue), the official
FEMA flood map that was released after the event, and the tweets
downloaded. The figure shows a good agreement between the two
flood maps, however, the satellite estimation underestimates the flood
extent due to the presence of thick clouds in the top of the image.
When clouds are not present, the classification agrees with FEMAmap.

However, there is an absence of areas classified as water in the
downtown Boulder area, which is in contrast to the large amount of
contributed data available throughout the city of Boulder that indicate
different levels of flooding. This result is due to the fact that the flooding
downtown Boulder was localized and not fully discernable at the reso-
lution of the satellite data. Furthermore, Twitter data are very subjective
and more representative of the users' feelings and perceptions. There-
fore, even limited flooding in downtown of the city of Boulder, massive
tweets were reported extensively.

The results obtained are important because they show that damage
assessment can be effectively performed by fusing remote sensing and
social media. Furthermore, the contributed data capture the subjective
perception of the people who experience a flood event. Fusing remote
sensing data and Twitter and other VGI presents the additional chal-
lenge of fusing quantitative data acquired through precise measure-
ments of EM radiation, with qualitative data that is very subjective
and only based on perceptions (Schnebele & Cervone, 2013).

6. Conclusion

This paper presents a novel framework to support the analysis of his-
torical disaster events, and the real-time event detection and tracking of
new events. Massive spatiotemporal data from social media streams
and remote sensing are generated continuously and dynamically, pos-
ing new challenges and opportunities to study disasters. To meet the
dynamic computing requirements of disaster analysis for real-time
events, cloud computing is proposed as the infrastructure to provide
on-demand and flexible computing resources.
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A prototype is implemented that queries Wikipedia to gather data
about past events, or even detects new unfolding events. Once an
event is selected, data from multiple sources, including remote sensing
and social media streams, are downloaded and analyzed in real time
using a cloud computing platform. Initial research results for two case
studies show a great potential to support disaster analysis andmanage-
ment that rely on heterogeneous data from multiple sources and re-
quire a resilient and scalable computing platform. The present work
provides a general solution that it is not event specific, and can be
used both for retrospective analysis and for real time monitoring and
decision making.

In this paper, Wikipedia is primarily used as a data source to obtain
metadata (e.g., event type, location, and time) for historical natural,
the system could also use Wikipedia to harvest disaster information in
real time in future. The collection and analysis of crawling data can
occur automatically as a Wikipedia page is created for the hazard. It is
of interest to note that Wikipedia pages about medium to large disas-
ters, inmost cases, are created and updated in real time. Remote sensing
data become integral part of the disaster assessment process (Schnebele
& Cervone, 2013) when they are available. However, orbital and atmo-
spheric limitations often hinder our ability to collect real time data
using satellites. We envision that while satellite remote sensing data
can provide only snapshots at discrete temporal points, aerial remote
sensing from airplanes and/or Unmanned Aerial Vehicles (UAVs) can
help provide a more continuous data stream that can be integrated in
real time. Therefore, while the Boulder test case (Section 5.5) was per-
formed using only 4 satellite images collected over a period of one
week, the proposed data fusingmethodology can utilize remote sensing
data in real time, which are likely to become widely available in the
future.

To detect emerging topics over the socialmedia, we propose a track-
ing interval and a tweeting threshold to detect significant hashtags.
However, this approach could produce many hot topics that are not as-
sociated with any developing disasters. To reduce the noise in the sys-
tem, it is possible to detect relevant topics by further filtering tweets
according to their time-stamps, and by selecting only tweets that cluster
in time and space when available.
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